WEEK 3

(The Third Week)

Miscellaneous

binary numbers – computers only deal with ON or OFF signals - nothing in between. This is a two number system - hence 'bi.' The binary number system has only two digits - '0' or '1.' Group the numbers together to make larger numbers - just like we do in decimal number system - 1's, 10's, 100's, etc. So in the binary number system, that would be like 1's, 2's, 4's, 8's, 16's, 32's, 64's, etc. For example, binary 11001101 in decimal is 205.

bit - a single binary digit

byte - a group of eight binary digits

nibble - a group of four binary digits - two nibbles per byte - (term not often used)

hexadecimal - writing binary numbers is awkward so we use a system called hexadecimal. It's a 16 digit number system - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. (Our decimal number system is 10 digits - 0, 1, 2, 3, 4, 5, 6, 6, 7, 8, 9.) A single hexadecimal digit represents four bits. Two hexadecimal digits represent a byte.

Decimal Number�
Binary Number�
Hexadecimal Number�
�
0�
0000�
0�
�
1�
0001�
1�
�
2�
0010�
2�
�
3�
0011�
3�
�
4�
0100�
4�
�
5�
0101�
5�
�
6�
0110�
6�
�
7�
0111�
7�
�
8�
1000�
8�
�
9�
1001�
9�
�
10�
1010�
A�
�
11�
1011�
B�
�
12�
1100�
C�
�
13�
1101�
D�
�
14�
1110�
E�
�
15�
1111�
F�
�

�
With the hexadecimal number system, two digit can represent from 00 to FF - that is same as 0 to 255 in decimal. With the decimal system, two digits represent from 0 to 99.

characters - representations of letters and numbers that the computer understands. These are different than numbers for adding. Think of them as characters that you print. It includes the alphabet - lower case and upper case. Numbers. Special characters like "new line", "ring the bell", (try control G next time you have a telnet session), punctuation (.,!"?<>'{}()-+=, etc.)

ascii - a widely used standard for representing characters in your computer (American Standard Code for Information Interchange). The characters are represented in 7 bits - or one byte the top bit set to 0. So this is easily represented using a two-digit hexadecimal number. Here are some examples:

Hex Code�
Character�
Hex Code�
Character�
Hex Code�
Character�
�
20�
space�
30�
0�
68�
h�
�
21�
!�
31�
1�
69�
i�
�
22�
"�
32�
2�
6A�
j�
�
23�
#�
33�
3�
6B�
k�
�
24�
$�
34�
4�
6C�
l�
�
25�
%�
41�
A�
6D�
m�
�
26�
&�
42�
B�
6E�
n�
�
27�
'�
43�
C�
6F�
o�
�
28�
(�
44�
D�
70�
p�
�

Note: You cannot add two characters like you can in arithmetic. If they are characters, 2 plus 3 does not equal 5.

UNIX

More vi

$ - move the end of the line

% - this will be useful later - if you have a bracket, or parenthesis, (things like {([and])}) it has a begin bracket and an end bracket. Put the cursor on the bracket - press %, the cursor will move to the end bracket

?a_string - search backward (reverse order of /)

n - after your first search - either forward search or backward search, press for next

hexdump - prints the computer representation of a file. Use the -C option (there are other options try doing a man on hexdump). Example: hexdump -C file_name will print out on the screen location, hexadecimal representation, and ascii representation. (Sometimes this command is od - for octal dump.)

PERL

chop - cut off the last character of a string. Example:

$hi = "Helloo";

chop $hi;

print ($hi);

output is Hello (not Helloo)

chomp - if the last character of a string is a new line, cut it off. This is useful when you enter data at the command line like with <STDIN>. Think about it - that last character you enter is 'enter!'. So the computer thinks that the enter symbol (new-line) is part of the string. Example:

$hi = <STDIN>;

chomp $hi;

print ("$hi there");

If I enter "Hello" at the prompt, the output is:

Hello there

If I didn't do a chomp, the output would be:

Hello

there

More arithmetic

% - called modulo – use % to determine the remainder of a division. Example : 23 % 7 = 2

			(23 / 7 = 3 Remainder 2)

int – gets rid of the non-integer part of a number. Example: int(4.33653) returns 4

chr – returns the ascii character of the number. Example: $a_character = chr(109) sets $a_character to ‘m’.

if - test to see if something is true. If it is true, then do something about it. If it is not true, ignore.

$a_num = 6;

if ($a_num == 6)

{

 print ("The number is six");

}

Notes: '=' is an operator, '==' is a test to see if something is equal. Remember this - this is a common mistake. The test statement is inside parenthesis.

Also, note the curly brackets - everything inside the brackets (we call this a block) is performed if the if-statement is true. Otherwise it is ignored.

Other tests

< - less than - ($a_num < 6)

> - greater than - ($a_num > 6)

!= - not equal - ($a_num != 6)

> - Greater than - ($a_num > 6)

eq - tests a character or a string are equal - ($a_string eq "six")

ne - test a character or a string are not equal - ($a_string ne "six")

else - After you do an if test, if the statement is not true, then do this instead

a_num = 7;

if ($a_num == 6)

{

 print ("The number is six");

}

else

{

 print ("The number is not six");

}

elsif - short for else if - if the first statement is not true, try the next statement, or the next.

a_num = 7;

if ($a_num == 5)

{

 print ("The number is five");

}

elsif ($a_num == 6)

{

 print ("The number is six");

}

elsif ($a_num == 7)

{

 print ("The number is seven");

}

else

{

 print ("I can't figure out which number you picked\n");

}

nested statements - Find out if a number is between two numbers

$a_num = 5;

if ($a_num > 2)

{

 if ($a_num < 7)

 {

 print ("It's in between!\n");

 }

}

else

{

 print ("It's out!\n");

}

Excercises

Observe the ascii characters on my home page under ascii test and ascii test 2? What is the decimal number that starts the capital letters of the alphabet? What is the hexadecimal number that starts the lower case letters? What is the ascii character represented by the hexadecimal number 3D?

Run the vilearn program again, and this time do lesson 2.

Write a divide program which takes two numbers and divides the first by the second number. Print out the answer the way we used to do it in 3rd and 4th grade, before we new decimals – the divide answer (as an integer) with a remainder.

An algorithm for converting a decimal number (base 10) to its binary (base 2) equivalent is to continue dividing the decimal number by two and use the set of remainders as the answer. For example, convert 75 to a binary number. 75/2 = 37 R 1 : 37/2 = 18 R 1 : 18/2 = 9 R 0 : 9/2 = 4 R 1 : 4/2 = 2 R 0 : 2 / 2 = 1 R 0 : 1 / 2 = 0 R 1 : 0/2 = 0 R 0 . Do this eight times to get eight binary digits. Take all the remainders to determine the binary answer, starting with the last one first -- 0100 1011. Concatenate the remainders to create the binary number answer as an eight-digit number. (Even though the answer is a number, you can concatenate the numbers and perl will automatically convert them to characters – one of the very neat things about perl.) Make sure that the user does not enter a number greater than 255, or less than 0.

Do the same thing as number 3, but this time create a program that converts a decimal (base 10) number to a hexadecimal number (base 16). In this case, you will continue to divide the number by 16, but you only need to do it two times (instead of eight). The answer will be a two-digit hexadecimal number. You will have to convert remainders like 10 or 11 to their hexadecimal equivalent – A, B. Concatenate the remainders to create the answer. Make sure that the user does not enter a number greater than 255, or less than 0.

Write a program that asks the use to enter a number, and the program will return the ascii character it represents. For example, if the program asks me to enter a number and I enter 74, the program will print out a ‘J’ (see the ascii table).

Write a better calculator. When you run the program, program will ask you for a first number, then an operator (+, -, *, or /), then the second number. The program will figure out which operation to perform on the numbers, then print out the answer.

