WEEK 2

(The Second Week)

Miscellaneous

shell – your interface to the computer. Different shells have different characteristics. Choose a shell based on what kind of work you are going to do on a computer, and based on your personal preference. Popular shells are: csh (c-shell), tcsh (t-shell), korn, bash, sh. I prefer tcsh, so that is what we will use here. All shells allow you to run the basic unix commands, but there are added features.

tcsh features:

tab – start typing the name of a file, hit tab, and the shell will finish typing it for you

^d – start typing a command, then type control-d to see what your options are

history – lists the commands you have typed in

!! – retype last command

Up-arrow, down-arrow – navigate through the commands you have typed

The .tcshrc file is used to configure your shell environment when you start up – like what kind of prompt, short-cut commands, etc.

PUTTY tricks:

A very useful feature of putty – highlight a phrase – either in the same window, or another putty window (another telnet session). Then with the right button, click – and the phrase will automatically be typed in for you. Also, you can highlight a phrase, then control-c, so you can copy the phrase into a Word document.

UNIX

man - man stands for manual. Use it to get help on just about anything on the unix machine. For instance, you can do man ls to see all the different options there are for printing out list (-l, -a, etc.).

files - remember that in the unix file system there are directories (like folders) and files. A directory can contain more directories, and files. There are two kinds of files (actually there are more, but that doesn't matter right now). A binary file is a file that is almost impossible for you and I to read - examples, executables, gif and jpg images, word documents. It contains some irregular characters. An ascii file (also called a text file) is something you and I can read. It contains only regular characters.

path – a path is the full location of a file (or a directory) For instance, I may have a file called myfile.txt in my home directory. The full path starts at root. So that file in my home directory can also be located with this name: /arpa/ag/d/dhanks/myfile.txt

editor - tool that allows you to view, create, and edit ascii files. Word is an editor, although it creates formatted documents which make the file a binary file. (The formatting information is made up of irregular characters.) On unix, there are vi, pico, ed, emacs.

vi is the most universally available editor in unix. Enter vi filename to create a new file or edit an existing file. There are two modes - control mode and text mode.

control mode - navigate and manipulate text in the file. You begin in control mode. You can get into control mode at any time by pressing the escape key - when you hear a beep, you are in control mode.

up arrow, down arrow, left arrow, right arrow - moves you around the file

k, j, h, l - moves you around same as above

i - insert - enters the text mode

a - appends - enters the text mode

x - delete current character

dd - delete the entire line

/string - search for, and move to string

Gline_number - go to line_number - G alone goes to the end of the file

:w - write, save the file

:q - quit

:!q - really quit

:wq - save and quit

text mode - enter text into the file. Get out of text mode by pressing escape.

We will learn more commands in vi later. When using vi, remember which mode you are in. Be careful!

view – just like vi, except you cannot change anything in the file you are looking at – only view it. Use this if you want to only look at a file and don’t want to accidently change anything.

�

PERL

All perl statements end with ‘;’

print – to print to the screen, use the print statement: print (“Hello World!!”);

Scalar – a scalar is a variable. Begins with $, next character must be a letter, then the next characters can be letters, numbers, or _. Examples: $number, $num1, $num2, $a_string, $f451

PERL is case-sensitive - $number is different from $NUMBER is different from $Number

A scalar can be given a value – either a number, a character, or a string

Number - $num = 1;

Character - $a_char = ‘r’;

String - $some_words = “This is a string!!!!”;

Use print to print out the value of a scalar. For example:

		$num=2;

		print ($num);

	will print out a 2. Also:

		$a_string=”Hello World!”;

		print ($a_string);

	will print out Hello World!.

Embed a scalar into a print statement. For example:

		$num=2;

		print(“The answer is $num”);

	will print out The answer is 2.

Arithmetic operators: +, -, *, / to add, subtract, multiply, and divide. For example:

		$num1=24;

		$num2=3;

		$num3=$num1/$num2;

		print (“Answer is $num3”);

	will print out Answer is 8

Use + to concatenate two strings. For example:

		$str1=”Noah is “;

		$str2=”sleepy”;

		$str3=$str1 + $str2;

		print ($str3);

	 will print out Noah is sleepy

Use ‘\n’ characer (the new line character) to make a new line. Example:

		print(“number1\nnumber1”);

	will print number1 and number2 on separate lines

�

<STDIN> allows the user of your program to enter his own data. For example:

		$str1=”Noah is “;

		$str2=<STDIN>;

		$str3=$str1 + $str2;

		print ($str3);

	When the program is run, the program will stop and ask you to enter something. If the user

 	enters smelly, and then hits enter, the program will print out Noah is smelly

When you write a program, write one statement per line

is for comments – anything on the line after a # is ignored by the perl program. For example, #This is my program – will not be run, but it is there as a note to you.

Example program:

#!/usr/pkg/bin/perl

#This is a simple example program

print (“\nI will add any two numbers\n”);

print (“Enter the first number: “);

$num1 = <STDIN>;

print (“Enter the second number: “);

$num2 = <STDIN>;

$num3 = $num1 + $num2;

print (“Adding $num1 and $num2 yields $num3 as an answer\n”);

Excercises

Go to the faq unix category and read about the different shells available (UNIX category). Read the instructions carefully, then change your shell to tcsh. (chpass /usr/pkg/bin/tcsh).

Work with the t-shell a little bit. Type in history. Use the up arrow and down arrow. From your home directory, cd to your homework directory, except only type in ho then hit tab.

Copy over the .tschrc file from my directory. Then start a new telnet session. What is different about the two sessions?

Do a more or cat on the .tcshrc file. What do you see? Can you figure out some of the statements in the file?

Do a man on ls. How many options are there?

Do a man on cp. What does cp –p do? What does cp –R do?

From my directory, copy over the google.gif file and the short.doc file to your home directory. Do a cat or a more on it. Can you read it? Why or why not?

At the command prompt, type vilearn. This is a tutorial for vi. Do the first lesson.

Do a view on the /etc/passwd file we looked at last week. Find your name this time using /. Much easier this time. What is your user id (UID) – it’s that number next to you login name. Then quit out.

Create a new file called stuff.txt. Enter anything you wish – a couple lines. Now decide that you don’t want the file anymore – so just quit out using :q. What happened? (Remember, don’t save the file.) Now use :q! to really quit.

Create a new file called adder.pl. Enter the example program from above into the file. Save it and quit out of the program. Run it by entering perl adder.pl. Try it a few times.

Copy over the program1.pl file from my stuff directory to your own week2 directory. Run it once. Now modify it to print out the line two times.

Copy over the program2.pl in my stuff directory. What is wrong with it? Fix it.

Copy over the program3.pl in my stuff directory. What is wrong with it? Fix it.

Copy over the random.pl program from my stuff directory. What is wrong with it? Fix it. (Ignore the chomp and rand statements – we will learn about this later.)

Copy the adder.pl program to a new file called divider.pl. Modify it to divide two numbers. Test it to see if it works. (On one of the tests, enter zero as the divider. What happens? On another test, enter a letter instead of a number. What happens? What do you think you should do to prevent these kind of bad entries?)

